年,著名发明家托马斯·爱迪生(ThomasEdison)在一次实验中,观察到一种奇怪现象。
当时,他正在进行灯丝(碳丝)的寿命测试。在灯丝旁边,他放置了一根铜丝,但铜丝并没有接在任何电极上。也就是说,铜丝没有通电。
碳丝正常通电后,开始发光发热。过了一会,爱迪生断开电源。他无意中发现,铜丝上竟然也产生了电流。
爱迪生没有办法解释出现这种现象的原因,但是,作为一个精明的“商人”,他想到的第一件事,就是给这个发现申请专利。他还将这种现象,命名为“爱迪生效应”。
爱迪生
现在我们知道,爱迪生效应的本质,是热电子发射。也就是说,灯丝被加热后,表面的电子变得活跃,“逃”了出去,结果被金属铜丝捕获,从而产生了电流。
爱迪生申请专利之后,并没有想到这个效应有什么用途,于是将其束之高阁。
年,爱迪生电光公司的技术顾问、英国物理学家约翰·安布罗斯·弗莱明(JohnAmbroseFleming)访问美国,与爱迪生进行会面。爱迪生向弗莱明展示了自己发现的爱迪生效应,给弗莱明留下了深刻的印象。
弗莱明
这个弗莱明,大家应该也比较熟悉。他是一个电学专家,也是一个电机工程师,我们中学经常使用的右手定则,就是他发明的。
除了传统电学之外,弗莱明其实还有一个强项,那就是无线电磁学。他年轻的时候,曾经师从麦克斯韦,专门学习无线电磁理论。麦克斯韦临终前上课,只有两个学生来听,其中一个,就是弗莱明。
弗莱明观摩了爱迪生效应的演示后,也没有想到这个效应到底能用来干啥。事实上,等到他真正用到它,已经是十几年后。
年,意大利人伽利尔摩·马可尼(GuglielmoMarconi)成功取得了世界上第一个无线电报系统专利,从而将人类带入无线通信时代。
马可尼
年,马可尼决定尝试横跨大西洋的远程无线电通信。为了完成这个壮举,他找来了弗莱明,和他签约,请他帮忙改进自己的无线电发射机和接收机。
弗莱明也确实没有辜负马可尼的期望,大幅改进了马可尼的设计,帮助实现了跨大西洋无线通信实验。(可惜,马可尼刻意对外隐瞒了弗莱明的贡献,还“忘记”了自己承诺要给弗莱明的股股票奖励,把弗莱明气得半死。)
弗莱明在改进无线通信系统的时候,遇到了很多技术挑战。其中,最大的挑战,就是无线信号的接收。
简单来说,就是在接收端,如何检波信号,放大信号,让信号能够被完美解读。
放大信号大家都懂,那什么是检波信号呢?
所谓信号检波,其实就是信号筛选。天线接收到的信号,是非常杂乱的,什么信号都有。我们真正需要的信号(指定频率的信号),需要从这些杂乱信号中“过滤”出来,这就是检波。
想要实现检波,单向导通性(单向导电)是关键。
大家都知道,无线电磁波是高频振荡,每秒高达几十万次的频率。无线电磁波产生的感应电流,也随着“正、负、正、负”不断变化,如果我们用这个电流去驱动耳机,一正一负就是零,耳机就没办法反应出信号。
采用单向导电性,正弦波的负半周就没有了,全部是正的,电流方向一致,把高频过滤掉之后,耳机就能够轻松体现出电流的变化。
去掉负半周,电流方向变成一致的,容易解读在这里,我要先给大家介绍一样东西——矿石检波器。
年,德国科学家卡尔·布劳恩(KarlFerdinandBraun)发现,有一些天然矿石(金属硫化物)具有电流单向导通的特性,可以用于整流(将交流电变成直流电)。
年,英属印度物理学家贾格迪什·钱德拉·博斯(JagadishChandraBose)基于卡尔·布劳恩的发现,利用方铅矿(硫化铅)的单向导电性,制成了世界上第一个检波器——矿石检波器。
年,美国人格林里夫·惠特勒·皮卡德(GreenleafWhittierPickard),基于矿石检波器,成功制造了世界上第一个矿石收音机。这为后来无线电广播的迅速普及奠定了基础。
弗莱明在研究如何改进无线电接收机的时候,采用了矿石检波器。但是,他想起了之前的爱迪生效应,他想到——是不是可以基于爱迪生效应的电子流动,设计一个新型的检波器呢?
就这样,年,世界上第一只真空电子二极管,在弗莱明的手下诞生了。当时,这个二极管也叫做“弗莱明阀”。(真空管,vacuumtube,也就是电子管,有时候也叫“胆管”。)
弗莱明发明的二极管
弗莱明的二极管,结构其实非常简单,就是真空玻璃灯泡里,塞了两个极:一个阴极(Cathode),加热后可以发射电子;一个阳极(Anode),接收电子。
旁热式二极管
玻璃管里之所以要抽成真空,是为了防止发生气体电离,对正常的电子流动造成影响,破坏特性曲线。(抽成真空,还可以有效降低灯丝的氧化损耗。)
二极管的出现,解决了检波和整流需求。但是,它还有改进的空间。
年,马可尼应邀到美国做无线电通讯表演。他的表演,吸引了一个年轻人的
转载请注明:http://www.0431gb208.com/sjsbszl/8149.html